Concordance group and stable commutator length in braid groups Academic Article uri icon


  • We define quasihomomorphisms from braid groups to the concordance group of knots and examine their properties and consequences of their existence. In particular, we provide a relation between the stable four ball genus in the concordance group and the stable commutator length in braid groups, and produce examples of infinite families of concordance classes of knots with uniformly bounded four ball genus. We also provide applications to the geometry of the infinite braid group B1. In particular, we show that the commutator subgroup ŒB1; B1 admits a stably unbounded conjugation invariant norm. This answers an open problem posed by Burago, Ivanov and Polterovich.

publication date

  • January 1, 2015