Size-Dependent Tunneling and Optical Spectroscopy of CdSe Quantum Rods Academic Article uri icon


  • Abstract Photoluminescence excitation spectroscopy and scanning-tunneling spectroscopy are used to study the electronic states in CdSe quantum rods that manifest a transition from a zero-dimensional to a one-dimensional quantum-confined structure. Both optical and tunneling spectra show that the level structure depends primarily on the diameter of the rod and not its length. With increasing diameter, the band gap and the excited state level spacings shift to the red. The level structure was assigned using a multiband effective-mass model, showing a similar dependence on rod dimensions.

publication date

  • July 1, 2002