Nonlinear solid-state filter based on photochromism induced by 2-photon absorption in a dye-doped sol-gel Conference Paper uri icon


  • There is much interest in enhancement of the absorbance performance of nonlinear absorber solid-state filters. In this work we present an advanced reversible nonlinear filter based on a dye-doped sol-gel matrix. The absorbance enhancement was achieved by using a combination of two absorption mechanisms in the same molecule; a photochromic absorption which is induced by 2-photon absorption (2PA). The 2PA serves as the trigger for initiating the photochromism through Förster-resonance-energy-transfer (FRET) between the fluorescent donor and the photochromic acceptor. We synthesized a new bifunctional-chromophore that incorporated a carbazole-derived 2PA fluorescent donor and a chromene-derived photochromic acceptor, covalently linked together in a single molecule by a ~6 Å carboxyl group or oxygen bridge. The bifunctional-chromophore was doped in an inorganic-organic hybrid matrix prepared by the fast-sol-gel process. These materials solidify without shrinkage or formation of cracks and present promising properties as optical matrices for smart filters. The dye-doped sol-gel disc presents high transparency in the visible region ("colorless"), which under UV-irradiation (one-photon absorption in the photochromic part of the molecule), transforms into a strongly absorbing filter ("dark colored"), due to the conversion of the photochromic moiety to its "open" absorbing form. We have demonstrated that this ring-opening can also be induced by visible-light (620 nm) using the 2PA carbazole-derived moiety of the molecule. We have studied the fabrication routes and optical performance of these filters. We present studies of the 2PA mechanism of the carbazole derivative, FRET efficiency of the combined-molecule as well as in solutions of the individual moieties, and reversible dynamics of the photochromic moiety.

publication date

  • October 7, 2014