Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars Academic Article uri icon


  • NEUTRON-STAR collisions occur inevitably when binary neutron stars spiral into each other as a result of damping of gravitational radiation. Such collisions will produce a characteristic burst of gravitational radiation, which may be the most promising source of a detectable signal for proposed gravity-wave detectors1. Such signals are sufficiently unique and robust for them to have been proposed as a means of determining the Hubble constant2. However, the rate of these neutron-star collisions is highly uncertain3. Here we note that such events should also synthesize neutron-rich heavy elements, thought to be formed by rapid neutron capture (the r-process)4. Furthermore, these collisions should produce neutrino bursts5 and resultant bursts of γ-rays; the latter should comprise a subclass of observable γ-ray bursts. We argue that observed r-process abundances and γ-ray-burst rates predict rates for these collisions that are both significant and consistent with other estimates.

publication date

  • January 1, 1989

published in