A computational fluid dynamics simulation of a high pressure ejector COIL and comparison to experiments Academic Article uri icon


  • The results of three-dimensional computational fluid dynamics model calculations are reported in detail and compared to available experimental results [Nikolaev et al., IEEE J. Quantum Electron. 38, 421 (2002)]. It is shown that the model is applicable to high pressure, ejector type chemical oxygen-iodine laser (COIL), reasonably reproducing the measured gain, temperature, static pressure and gas velocity. A previous model which included I 2 (A'3 Pi 2u), I 2 (A 3 Pi 1u) and O 2 (a 1 Delta g, v) as significant intermediates in the dissociation of I2 [Waichman et al., J. Appl. Phys. 102, 013108 (2007)] reproduced the measured gain and temperature of a low pressure supersonic COIL. The previous model is complemented here by adding the effects of turbulence, which play an important role in high pressure COILs.

publication date

  • January 1, 2009