Development and validation of a real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay for investigation of wild poliovirus type 1-South Asian (SOAS) strain reintroduced into Israel, 2013 to 2014. Academic Article uri icon


  • In February 2013, wild poliovirus type 1 (WPV1) was reintroduced into southern Israel and resulted in continuous silent circulation in the highly immune population. As a part of the public health emergency response, a novel real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was developed, to allow for the sensitive and specific detection of the circulatingWPV1-South Asian (SOAS) strain. Specific primers and probes derived from the VP-1 region were designed, based on sequenced sewage isolates, and used to simultaneously amplify this WPV1-SOAS sequence together with bacteriophage MS-2 as internal control. High titre WPV1-SOAS stock virus was used for assay optimisation and 50 processed sewage samples collected from southern Israel and tested by reference culture based methods were used for analytical validation of the assay's performance. The limit of detection of the multiplex qRT-PCR (SOAS/MS-2) assay was 0.1 plaque-forming unit (pfu)/reaction (20 pfu/mL) for WPV1-SOAS RNA with 100% sensitivity, specificity, positive and negative predictive values when compared to the culture based method. The turnaround time was rapid, providing results for environmental samples within 24 to 48 hours from completion of sewage processing, instead of five to seven days by culture-based analysis. Direct sewage testing by qRT-PCR assay proved to be a useful tool for rapid detection and environmental surveillance of WPV1-SOAS circulating strain during emergency response. Application of the approach for detection of WPV1-SOAS in stool samples obtained during acute flaccid paralysis (AFP) surveillance or field surveys should be further evaluated. .

publication date

  • January 1, 2014