Convergence of iterative scoring rules Academic Article uri icon


  • Abstract In multiagent systems, social choice functions can help aggregate the distinct preferences that agents have over alternatives, enabling them to settle on a single choice. Despite the basic manipulability of all reasonable voting systems, it would still be desirable to find ways to reach plausible outcomes, which are stable states, ie, a situation where no agent would wish to change its vote. One possibility is an iterative process in which, after everyone initially votes, participants may change their votes, one voter at a time. This technique, explored in previous work, converges to a Nash equilibrium when Plurality voting is used, along with a tie-breaking rule that chooses a winner according to a linear order of preferences over candidates. In this paper, we both consider limitations of the iterative voting method, as well as expanding upon it. We demonstrate the significance of tie-breaking …

publication date

  • January 1, 2016