A Hybrid Approach for Automatic Model Recommendation. Academic Article uri icon

abstract

  • One of the challenges of automating machine learning applications is the automatic selection of an algorithmic model for a given problem. We present AutoDi, a novel and resource-efficient approach for model selection. Our approach combines two sources of information: metafeatures extracted from the data itself and word-embedding features extracted from a large corpus of academic publications. This hybrid approach enables AutoDi to select top-performing algorithms both for widely and rarely used datasets by utilizing its two types of feature sets. We demonstrate the effectiveness of our proposed approach on a large dataset of 119 datasets and 179 classification algorithms grouped into 17 families. We show that AutoDi can reach an average of 98.8% of optimal accuracy and select the optimal classification algorithm in 49.5% of all cases.

publication date

  • January 1, 2018