Growth hormone receptor antagonism prevents early renal changes in nonobese diabetic mice Academic Article uri icon

abstract

  • Abstract . The growth hormone (GH)/insulin-like growth factor (IGF) axis is involved in diabetic renal disease. The role of a specific GH receptor (GHR) antagonist in the development of early renal changes in nonobese diabetic (NOD) mice was investigated. Female diabetic (nonketotic) NOD mice treated with a polyethylene glycol-treated GHR antagonist (2 mg/kg, every other day) (DA group) or saline (D group) and their nonhyperglycemic age-matched littermates (control animals) were euthanized 3 wk after the onset of diabetes. Body weights at euthanasia were similar among the groups. Serum GH levels were markedly elevated, and serum IGF-I levels were significantly decreased in D and DA animals, compared with controls. The increases in kidney weights and glomerular volumes observed for the D group were absent in the DA group. Albuminuria was increased in the D group but was normalized in the DA group. Extractable renal IGF-I protein levels were increased in the D group but were partially normalized in the DA group. Renal IGF-binding protein 1 mRNA levels were increased in the D group but returned to almost normal levels in the DA animals. Kidney IGF-I and GHR mRNA levels were decreased in both the D and DA groups. Renal GH-binding protein mRNA levels remained unchanged in both diabetic groups. GHR antagonism had a blunting effect on renal/glomerular hypertrophy and albuminuria in diabetic NOD mice. These salutary effects were associated with concomitant inhibition of increased renal IGF-I protein levels and were obtained without affecting either somatic growth or circulating GH and IGF-I levels. Therefore, modulation of GH effects may have beneficial therapeutic implications in diabetic nephropathy.

publication date

  • January 1, 1999