Therapy with eculizumab for patients with CD59 p. Cys89Tyr mutation Academic Article uri icon

abstract

  • Objective The objective of this work was to report on the outcome of eculizumab treatment in pediatric patients with recurrent acute predominantly motor, demyelinating neuropathy with conduction block, and chronic hemolysis attributed to p.Cys89Tyr mutation in the CD59 gene. Methods Four patients were recruited from our new registry of patients with homozygosity for the p.Cys89Tyr mutation on CD59. Participants received repeated intravenous eculizumab. In this 24-month open-label phase IIa study, we aimed to determine whether eculizumab reduces chronic hemolysis, and cumulative doses of steroids and intravenous immunoglobulin (IVIG), and ameliorates neurological deficits, compared to pretreatment status. Treatment response was evaluated every 2 to 4 weeks over 104 weeks and included examination with gross motor scoring by American Spinal Injury Association Impairment Scale and Inflammatory Neuropathy Cause and Treatment disability score, laboratory examination, well-being [12-item Short Form Health Survey; SF-12]). Neurological relapses and cumulative dose of IVIGs and/or corticosteroids before and after treatment were documented. Red blood cells (RBCs) and neutrophils were stained to evaluate C5b-9 deposition. ClinicalTrials.gov: NCT01579838. Results Dramatic and significant neurological amelioration in the upper limbs and trunk with more-modest amelioration in the lower limbs was observed in all patients. Corticosteroid and IVIG treatment was completely stopped. No patient relapsed during treatment despite infections, and there were no hospital admissions. Decreased C3bi and C5b-9 deposition on RBCs and neutrophils was documented (p < 0.0001). The SF-12 health questionnaires indicated significant improvement (p < 0.003). Interpretation Eculizumab was safely administered to these patients. Marked clinical improvement suggests that eculizumab may be a life-saving treatment for patients with acute predominantly motor, demyelinating neuropathy with conduction block, and secondary axonal damage attributed to primary p.Cys89Tyr mutation in the CD59 gene. Ann Neurol 2016;80:708–717

publication date

  • August 29, 2016