Dualizing complexes and perverse sheaves on noncommutative ringed schemes Academic Article uri icon

abstract

  • A quasi-coherent ringed scheme is a pair (X, $$ \mathcal{A} $$), where X is a scheme, and $$ \mathcal{A} $$ is a noncomutative quasi-coherent $$ \mathcal{O}_X $$ -ring. We introduce dualizing complexes over quasi-coherent ringed schemes and study their properties. For a separated differential quasi-coherent ringed scheme of finite type over a field, we prove existence and uniqueness of a rigid dualizing complex. In the proof we use the theory of perverse coherent sheaves in order to glue local pieces of the rigid dualizing complex into a global complex.

publication date

  • May 17, 2006