Ink-Jet Printing-Assisted Modification on Polyethersulfone Membranes Using a UV-Reactive Antimicrobial Peptide for Fouling-Resistant Surfaces Academic Article uri icon

abstract

  • Antimicrobial peptides (AMPs) are promising candidates for surface coatings to control biofilm growth on water treatment membranes because of their broad activity and the low tendency of bacteria to develop resistance to AMPs. However, general and convenient surface modification methods are limited, and a deeper understanding of the antimicrobial mechanism of action is needed for surface-attached AMPs. Here, we show a method for covalently attaching AMPs on porous ultrafiltration membranes using ink-jet printing and provide insight into the mode of action for the covalently tethered peptide RWRWRWA-(Bpa) (Bpa, 4-benzophenylalanine) against Pseudomonas aeruginosa. AMP-coated ultrafiltration membranes showed surface antibacterial activity and reduced biofilm growth. Fluorescence microscopy analysis revealed that the modified surfaces could cause cell membrane disruption, which was seen by live uptake of propidium iodide stain, and scanning electron microscopy images showed compromised cell membranes of atta...

publication date

  • August 31, 2018