Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation. Academic Article uri icon

abstract

  • Hematite (α-Fe2O3) is one of most investigated oxides for energy applications and specifically for photocatalysis. Many approaches are used to prepare well-controlled films of hematite with good photocatalytic performance. However, most of these methods suffer from a number of disadvantages, such as the small quantities of the product, and the assembly of the nanostructures is usually a secondary process. Herein, we present a facile and large-scale synthesis of mesoporous hematite structures directly on various substrates at moderate temperature and study their photoelectrochemical (PEC) properties. Our approach is based on thermal decomposition of iron acetate directly on a substrate followed by an annealing process in air to produce a continuous mesoporous film of α-Fe2O3, with good control of the size of the pores. Improving the PEC properties of iron oxide was achieved by deposition of CoO domains, which were formed by thermal decomposition of cobalt acetate directly onto the hematite surface to produ...

publication date

  • January 1, 2014