Inferring contextual preferences using deep encoder-decoder learners Academic Article uri icon

abstract

  • ABSTRACTContext-aware systems enable the sensing and analysis of user context in order to provide personalised services. Our study is part of growing research efforts examining how high-dimensional data collected from mobile devices can be utilised to infer users’ dynamic preferences that are learned over time. We suggest novel methods for inferring the category of the item liked in a specific contextual situation, by applying encoder-decoder learners (long short-term memory networks and auto encoders) on mobile sensor data. In these approaches, the encoder-decoder learners reduce the dimensionality of the contextual features to a latent representation which is learned over time. Given new contextual sensor data from a user, the latent patterns discovered from each deep learner is used to predict the liked item’s category in the given context. This can greatly enhance a variety of services, such as mobile online advertising and context-aware recommender systems. We demonstrate our contribution with a poin...

publication date

  • January 1, 2018