Polymeric carrier-mediated intracellular delivery of phosphatidylinositol-3, 4, 5-trisphosphate to overcome insulin resistance Academic Article uri icon

abstract

  • AbstractBackground: Phosphatidylinositol-3,4,5-trisphosphate (PIP3) is a major lipid second messenger in insulin-mediated signalling towards the metabolic actions of this hormone in muscle and fat.Purpose: Assessing the intracellular transport of exogenous PIP3 attached to a polymeric carrier in an attempt to overcome cellular insulin resistance.Methods: Artificial chromatic bio-mimetic membrane vesicles composed of dimyristoylphosphatidylcholine and polydiacetylene were applied to screen the polymeric carriers. PIP3 cellular localization and bio-activity was assessed by fluorescent and live-cell microscopy in L6 muscle cells and in 3T3-L1 adipocytes.Results and discussion: We demonstrate that a specific-branched polyethylenimine (PEI-25, 25 kDa) carrier forms complexes with PIP3 that interact with the bio-mimetic membrane vesicles in a manner predictive of their interaction with cells: In L6 muscle cells, PEI-25/fluorescent-PIP3 complexes are retarded at the cell perimeter. PEI-25/PIP3 complexes retain t...

publication date

  • January 1, 2015