Thermal polymerization of a brominated flame retardant in a glass-fiber-reinforced polypropylene-quantitative analysis Academic Article uri icon

abstract

  • Pentabromobenzylacrylate (PBBA) is a possible candidate for use as a fire retardant (FR) in polypropylene (PP) composites. While PBBA imparts FR properties to the PP composite, it also affects adversely its mechanical properties. The FR may undergo thermal polymerization or grafting to the PP chains during processing. To study the effect of the different forms of FR (monomer, polymerized, or grafted) on composite properties, we have quantified the extent of FR polymerization and extent of grafting onto the PP chains. Fourier transform infrared microscopy was used in this work to determine the extent of polymerization and the spatial distribution of the FR. The latter was found to be homogeneous throughout the composite. Thermal polymerization of the FR during extrusion is varied mainly by the addition of an antioxidant. The grafting process of the FR onto PP depends on the degree of thermal polymerization, and therefore on the addition of antioxidant. The limiting value for grafting achieved at full polymerization is ∼10% w/w. The grafted FR was found to have a significant effect on PP crystallinity, and hence it is expected to affect the mechanical properties as well. Bromine analysis indicates the FR has reacted with filler surfaces as well. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1506–1515, 2003

publication date

  • January 1, 2003