Tracking of multiple contaminant clouds Conference Paper uri icon


  • Abstract: In this paper, we address the problem of detection and tracking of multiple contaminant clouds. We develop a stochastic extension of the Gaussian puff model to characterize evolution of the average atmospheric pollutant concentration. To perform the sequential inference on this difficult problem, we propose a Markov Chain Monte Carlo (MCMC)-based Particle algorithm. Numerical simulations illustrate the ability of the algorithm to detect and track multiple contaminant clouds.

publication date

  • July 6, 2009