A note on Bruhat decomposition of $̊m GL(n)$ over local principal ideal rings Academic Article uri icon

abstract

  • Let A be a local commutative principal ideal ring. We study the double coset space of GL(n,A) with respect to the subgroup of upper triangular matrices. Geometrically, these cosets describe the relative position of two full flags of free primitive submodules of A^n. If k is the length of the ring, we determine for which of the pairs (n,k) the double coset space depend on the ring in question. For n=3, we give a complete parametrisation of the double coset space and provide estimates on the rate of growth of the number of double cosets.

publication date

  • January 1, 2006