Existence of a Thermodynamic Spin-Glass Phase in the Zero-Concentration Limit of Anisotropic Dipolar Systems Academic Article uri icon


  • The nature of ordering in dilute dipolar interacting systems dates back to thework of Debye and is one of the most basic, oldest and as-of-yet unsettled problems in magnetism. While spin-glass order is readily observed in several RKKY-interacting systems, dipolar spin glasses are the subject of controversy and ongoing scrutiny, e.g., in LiHoxY1�xF4, a rare-earth randomly diluted uniaxial (Ising) dipolar system. In particular, it is unclear if the spin-glass phase in these paradigmatic materials persists in the limit of zero concentration or not. We study an effective model of LiHoxY1�xF4 using large-scale Monte Carlo simulations that combine parallel tempering with a special cluster algorithm tailored to overcome the numerical difficulties that occur at extreme dilutions. We find a paramagnetic to spin-glass phase transition for all Ho þ ion concentrations down to the smallest concentration numerically accessible, 0.1%, and including Ho þ ion concentrations that coincide with those studied experimentally up to 16.7%. Our results suggest that randomly diluted dipolar Ising systems have a spin-glass phase in the limit of vanishing dipole concentration, with a critical temperature vanishing linearly with concentration. The agreement of our results with mean-field theory testifies to the irrelevance of fluctuations in interactions strengths, albeit being strong at small concentrations, to the nature of the low-temperature phase and the functional form of the critical temperature of dilute anisotropic dipolar systems. Deviations from linearity in experimental results at the lowest concentrations are discussed.

publication date

  • January 1, 2014