Subordinate class recognition using relational object models Conference Paper uri icon

abstract

  • We address the problem of sub-ordinate class recognition, like the distinction between different types of motorcycles. Our approach is motivated by observations from cognitive psychology, which identify parts as the defining component of basic level categories (like motorcycles), while sub-ordinate categories are more often defined by part properties (like'jagged wheels'). Accordingly, we suggest a two-stage algorithm: First, a relational part based object model is learnt using unsegmented object images from the inclusive class (eg, motorcycles in general). The model is then used to build a class-specific vector representation for images, where each entry corresponds to a model's part. In the second stage we train a standard discriminative classifier to classify subclass instances (eg, cross motorcycles) based on the class-specific vector representation. We describe extensive …

publication date

  • January 1, 2007