The glass half-full: Overestimating the quality of a novel environment is advantageous Academic Article uri icon

abstract

  • According to optimal foraging theory, foraging decisions are based on the forager's current estimate of the quality of its environment. However, in a novel environment, a forager does not possess information regarding the quality of the environment, and may make a decision based on a biased estimate. We show, using a simple simulation model, that when facing uncertainty in heterogeneous environments it is better to overestimate the quality of the environment (to be an “optimist”) than underestimate it, as optimistic animals learn the true value of the environment faster due to higher exploration rate. Moreover, we show that when the animal has the capacity to remember the location and quality of resource patches, having a positively biased estimate of the environment leads to higher fitness gains than having an unbiased estimate, due to the benefits of exploration. Our study demonstrates …

publication date

  • January 1, 2012