A decision theoretic approach to combining information filtering Academic Article uri icon

abstract

  • Purpose – The purpose of this paper is to present an extension to a framework based on the information structure (IS) model for combining information filtering (IF) results. The main goal of the framework is to combine the results of the different IF systems so as to maximise the expected payoff (EP) to the user. In this paper we compare three different approaches to tuning the relevance thresholds of individual IF systems that are being combined in order to maximise the EP to the user. In the first approach we set the same threshold for each of the IF systems. In the second approach the threshold of each IF system is tuned independently to maximise its own EP (“local optimisation”). In the third approach the thresholds of the IF systems are jointly tuned to maximise the EP of the combined system (“global optimisation”).Design/methodology/approach – An empirical evaluation is conducted to examine the performance of each approach using two IF systems based on somewhat different filtering algorithms (TFIDF,...

publication date

  • January 1, 2009