Block Copolymers as Dispersants for Single-Walled Carbon Nanotubes: Modes of Surface Attachment and Role of Block Polydispersity Academic Article uri icon


  • When using amphiphilic polymers to exfoliate and disperse carbon nanotubes in water, the balance between the hydrophobic and hydrophilic moieties is critical and nontrivial. Here, we investigate the mode of surface attachment of a triblock copolymer, Pluronics F127, composed of a central hydrophobic polypropylene oxide block flanked by hydrophilic polyethylene oxide blocks, onto single-walled carbon nanotubes (SWNTs). Crucially, we analyze the composition in dispersant of both the as-obtained dispersion (the supernatant) and the precipitate-containing undispersed materials. For this, we combine the carefully obtained data from 1H NMR peak intensities and self-diffusion and thermogravimetric analysis. The molecular motions behind the observed NMR features are clarified. We find that the hydrophobic blocks attach to the dispersed SWNT surface and remain significantly immobilized leading to 1H NMR signal loss. On the other hand, the hydrophilic blocks remain highly mobile and thus readily detectable by NMR. ...

publication date

  • November 13, 2018