Caged Quantum Dots Academic Article uri icon


  • Photoactivatable organic fluorophores and fluorescent proteins have been widely adopted for cellular imaging and have been critical for increasing temporal and spatial resolution, as well as for the development of superresolution microscopy techniques. At the same time, semiconducting nanocrystal quantum dots (QDs) have shown superior brightness and photostability compared to both organic fluorophores and proteins. As part of our efforts to develop nanoparticles with novel optical properties, we have synthesized caged quantum dots, which are nonluminescent under typical microscopic illumination but can be activated with stronger pulses of UV light. We show that ortho-nitrobenzyl groups efficiently quench QDs of different compositions and emissions and can be released from the nanoparticle surface with UV light, both in solution and in live cells. This caging is dependent on the …

publication date

  • November 1, 2008