### abstract

- Consider an arithmetic group \({\mathbf{G}(O_S)}\), where \({\mathbf{G}}\) is an affine group scheme with connected, simply connected absolutely almost simple generic fiber, defined over the ring of S-integers O S of a number field K with respect to a finite set of places S. For each \({n \in \mathbb{N}}\), let \({R_n(\mathbf{G}(O_S))}\) denote the number of irreducible complex representations of \({\mathbf{G}(O_S)}\) of dimension at most n. The degree of representation growth \({\alpha(\mathbf{G}(O_S)) = \lim_{n \rightarrow\infty} \log R_n(\mathbf{G}(O_S)) / \log n}\) is finite if and only if \({\mathbf{G}(O_S)}\) has the weak Congruence Subgroup Property. We establish that for every \({\mathbf{G}(O_S)}\) with the weak Congruence Subgroup Property the invariant \({\alpha(\mathbf{G}(O_S))}\) is already determined by the absolute root system of \({\mathbf{G}}\). To show this we demonstrate that the abscissae of convergence of the representation zeta functions of such groups are invariant under base extensions \({K{\subset}L}\). We deduce from our result a variant of a conjecture of Larsen and Lubotzky regarding the representation growth of irreducible lattices in higher rank semi-simple groups. In particular, this reduces Larsen and Lubotzky’s conjecture to Serre’s conjecture on the weak Congruence Subgroup Property, which it refines.