Magnetic Induction of Multiscale Anisotropy in Macroporous Alginate Scaffolds Academic Article uri icon

abstract

  • Nano- and microscale topographical cues have become recognized as major regulators of cell growth, migration, and phenotype. In tissue engineering, the complex and anisotropic architecture of culture platforms is aimed to imitate the high degree of spatial organization of the extracellular matrix and basement membrane components. Here, we developed a method of creating a novel, magnetically aligned, three-dimensional (3D) tissue culture matrix with three distinct classes of anisotropy-surface topography, microstructure, and physical properties. Alginate-stabilized magnetic nanoparticles (MNPs) were added to a cross-linked alginate solution, and an external magnetic field of about 2400 G was applied during freezing to form the aligned macroporous scaffold structure. The resultant scaffold exhibited anisotropic topographic features on the submicron scale, the directionality of the pore shape, and increased scaffold stiffness in the direction of magnetic alignment. These scaffold features were modulated by a...

publication date

  • November 14, 2018