How to Conceptualize Catalytic Cycles? The Energetic Span Model Academic Article uri icon

abstract

  • A computational study of a catalytic cycle generates state energies (the E-representation), whereas experiments lead to rate constants (the k-representation). Based on transition state theory (TST), these are equivalent representations. Nevertheless, until recently, there has been no simple way to calculate the efficiency of a catalytic cycle, that is, its turnover frequency (TOF), from a theoretically obtained energy profile. In this Account, we introduce the energetic span model that enables one to evaluate TOFs in a straightforward manner and in affinity with the Curtin−Hammett principle. As shown herein, the model implies a change in our kinetic concepts.Analogous to Ohm’s law, the catalytic chemical current (the TOF) can be defined by a chemical potential (independent of the mechanism) divided by a chemical resistance (dependent on the mechanism and the nature of the catalyst). This formulation is based on Eyring’s TST and corresponds to a steady-state regime.In many catalytic cycles, only one transi...

publication date

  • January 1, 2011