Simplified optical scatterometry for periodic nanoarrays in the near-quasi-static limit Academic Article uri icon


  • Scatterometry is now proven to be a very powerful technique for measurement of subwavelength periodic structures. However it requires heavy numerical calculations of the scattered optical waves from the structure. For periodic nanoarrays with feature size less than 100 nm, it is possible to simplify this using the Rytov near-quasi-static approximation valid for feature periods only few time less than the wavelength. The validity is investigated by way of comparison with exact numerical results obtained with the eigenfunctions approach. It is shown to be adequate for the determination of the structure parameters from the specularly reflected or transmitted waves and their polarization or ellipsometric properties. The validity of this approach is applied to lamellar nanoscale grating photoresist lines on Si substrate. The high sensitivity of the signals to the structure parameters is demonstrated using wavelengths of only few times the period.

publication date

  • January 1, 2007