Nanostructural superconducting materials for fault current limiters and cryogenic electrical machines Academic Article uri icon

abstract

  • Materials of the Y-Ba-Cu-O (melt-textured YBa2Cu3O7-d-based materials or MT-YBCO) and Mg-B-O (MgB2-based materials) systems with high superconducting performance, which can be attained due to the formation of regularly distributed nanostructural defects and inhomogenities in their structure can be effectively used in cryogenic technique, in particular in fault current limiters and electrical machines (electromotors, generators, pumps for liquid gases, etc.). The developed processes of high-temperature (900-800 oC) oxygenation under elevated pressure (16 MPa) of MT-YBCO and high-pressure (2 GPa) synthesis of MgB2-based materials allowed us to attain high SC (critical current densities, upper critical fields, fields of irreversibility, trapped magnetic fields) and mechanical (hardness, fracture toughness, Young modulus) characteristics. It has been shown that the effect of materials properties improvement in the case of MT-YBCO was attained due to the formation of high twin density (20-22 micron-1), prevention of macrockracking and reduction (by a factor of 4.5) of microcrack density, and in the case of MgB2-based materials due to the formation of oxygen-enriched as compared to the matrix phase fine-dispersed Mg-B-O inhomogenities as well as inclusions of higher borides with near-MgB12 stoichiometry in the Mg-B-O matrix (with 15-37 nm average grain sizes). The possibility is shown to obtain the rather high Tc (37 K) and critical current densities in materials with MgB12 matrix (with 95 percent of shielding fraction as calculated from the resistant curve). Comment: 26 pages, 9 figues, 1 tables, presented at OMEE-2009, accepted for Acta Physica Polonica A

publication date

  • January 1, 2010