Non-hydrostatic effects in the Dead Sea Academic Article uri icon


  • Abstract. The Dead Sea is the saltiest and lowest terminal lake in the world. Currently, the Dead Sea’s water level is dropping by more than 1 m per year, due to excessive use of the water that previously flowed into it. The Dead Sea constitutes a unique environment and is important from economic, environmental, and touristic points of view. The winter deep convection of the Dead Sea and its deep and narrow basin suggest that non-hydrostatic effects may significantly affect its circulation. Despite these factors, the expected non-hydrostatic effects on the circulation of the Dead Sea have not been investigated. Here we perform high resolution (100 m) ocean general circulation model (the MITgcm) simulations of the Dead Sea and show that the non-hydrostatic results are very different from the hydrostatic ones. Specifically, we show that the winter non-hydrostatic simulations resulted in a layer of dense water overlaying slightly lighter water during the several last hours of the night; this convection process involved plumes of heavier sinking water and the entrainment of the plumes. We also studied the effect of the wind stress’s diurnal variability and found it to be important, especially during the summer when the wind’s variability drastically increased the surface kinetic energy; however, it did not alter the depth density profile. The results presented here may be important for the Dead Sea’s potash industry and for the planned Red Sea-Dead Sea canal that aims to stop and, possibly, to increase the level of the Dead Sea using the Red Sea’s water.

publication date

  • January 1, 2017