Nonhomogeneity of the density of states of tunneling two-level systems at low energies Academic Article uri icon


  • Amorphous solids, and many disordered lattices, exhibit a remarkable qualitative and quantitative universality in their acoustic properties at temperature $\lesssim 3$K. This phenomenon is attributed to the existence of tunneling two level systems (TTLSs), characterized by a homogenous density of states (DOS) at energies much lower than the disorder energy ($\approx 0.1$eV). Here we calculate numerically, from first principles, the DOS of KBr:CN glass, the archetypal disordered lattice showing universality. In contrast to the standard tunneling model, we find that the DOS diminishes abruptly at $\approx 30$K, and that tunneling states differ essentially by their symmetry under inversion. This structure of the TTLSs dictates the low temperature below which universality is observed, and the quantitative universality of the acoustic properties in glasses. Consequences to the properties of glasses at intermediate temperatures, as well as to the microscopic structure of amorphous solids, are discussed.

publication date

  • January 1, 2014