On representations of rational Cherednik algebras in complex rank Academic Article uri icon


  • We study a family of abelian categories O_{c, t} depending on complex parameters c, t which are interpolations of the O-category for the rational Cherednik algebra H_c(t) of type A, where t is a positive integer. We define the notion of a Verma object in such a category (a natural analogue of the notion of Verma module). We give some necessary conditions and some sufficient conditions for the existence of a non-trivial morphism between two such Verma objects. We also compute the character of the irreducible quotient of a Verma object for sufficiently generic values of parameters c, t, and prove that a Verma object of infinite length exists in O_{c, t} only if c is rational and c < 0. We also show that for every rational c < 0 there exists a rational t < 0 such that there exists a Verma object of infinite length in O_{c, t}. The latter result is an example of a degeneration phenomenon which can occur in rational values of t, as was conjectured by P. Etingof.

publication date

  • January 1, 2013