Ergodic and mixing sequences of transformations Academic Article uri icon

abstract

  • The notions of ergodicity, strong mixing and weak mixing are defined and studied for arbitrary sequences of measure-preserving transformations of a probability space. Several results, notably ones connected with mean ergodic theorems, are generalized from the case of the sequence of all powers of a single transformation to this case. The conditions for ergodicity, strong mixing and weak mixing of sequences of affine transformations of compact groups are investigated.

publication date

  • January 1, 1984