Extended lifted inference with joint formulas Academic Article uri icon


  • The First-Order Variable Elimination (FOVE) algorithm allows exact inference to be applied directly to probabilistic relational models, and has proven to be vastly superior to the application of standard inference methods on a grounded propositional model. Still, FOVE operators can be applied under restricted conditions, often forcing one to resort to propositional inference. This paper aims to extend the applicability of FOVE by providing two new model conversion operators: the first and the primary is joint formula conversion and the second is just-different counting conversion. These new operations allow efficient inference methods to be applied directly on relational models, where no existing efficient method could be applied hitherto. In addition, aided by these capabilities, we show how to adapt FOVE to provide exact solutions to Maximum Expected Utility (MEU) queries over …

publication date

  • January 1, 2012