Wheeler-DeWitt Quantization of Gravity Models of Unified Dark Energy and Dark Matter Academic Article uri icon


  • First, we describe the construction of a new type of gravity-matter models based on the formalism of non-Riemannian space-time volume forms - alternative generally covariant integration measure densities (volume elements) defined in terms of auxiliary antisymmetric tensor gauge fields. Here gravity couples in a non-conventional way to two distinct scalar fields providing a unified Lagrangian action principle description of: (i) the evolution of both "early" and "late" Universe - by the "inflaton" scalar field; (ii) dark energy and dark matter as a unified manifestation of a single material entity - the "darkon" scalar field. A physically very interesting phenomenon occurs when including in addition interactions with the electro-weak model bosonic sector - we obtain a gravity-assisted dynamical generation of electro-weak spontaneous gauge symmetry breaking in the post-inflationary "late" Universe, while the Higgs-like scalar remains massless in the "early" Universe. Next, we proceed to the Wheeler-DeWitt minisuperspace quantization of the above models. The "darkon" field plays here the role of cosmological "time". In particular, we show the absence of cosmological space-time singularities.

publication date

  • January 1, 2017