Segmentation of hyperspectral images from the histograms of principle components Conference Paper uri icon


  • Further refinements are presented on a simple and fast way to cluster/segment hyperspectral imagery. In earlier work, it was shown that, starting with the first 2 principal component images, one could form a 2-dimensional histogram and cluster all pixels on the basis of the proximity to the peaks. Issues that we analyzed this year are the proper weighting of the different principal components as a function of the peak shape and automatic methods based on an entropy measure to control the number of clusters and the segmentation of the data to produce the most meaningful results. Examples from both visible and infrared hyperspectral data will be shown.

publication date

  • November 8, 2002