Interactions of lithium and drugs that affect signal transduction on behaviour in rats Academic Article uri icon


  • Abstract The therapeutic mechanism of the action of lithium in the treatment of bipolar affective disorder is not known, in spite of a burgeoning number of biochemical studies linking lithium to signal transduction processes. This article reviews a decade of studies examining the behavioural manifestations of manipulating inositol, cyclic adenosine monophosphate (cAMP) and G proteins in rats. Inositol, forskolin, dibutyryl cAMP and pertussis toxin all interacted with lithium when rearing behavior was measured. Lithium potentiated the increase in locomotion induced by injections of cholera toxin into the nucleus accumbens, consistent with the hypothesis that it inactivates inhibitory G proteins. More specific interactions were found between lithium and inositol following cholinergic and serotonergic stimulation. Inositol, but not forskolin, attenuated lithium-pilocarpine seizures and the enhancement of the serotonin syndrome; however, inositol had no effect on lithium-induced attenuation of wet dog shakes following an injection of 5-hydroxytryptophan. Behavioural evidence supports biochemical findings suggesting that lithium’s interactions with the phoshphatidyl inositol and cyclic AMP signal transduction systems may be relevant to its therapeutic effects in bipolar disorder. Further research on more specific behaviours may elucidate the relevant pharmacological mechanisms underlying the therapeutic effect of lithium.

publication date

  • January 1, 1999