Three-dimensional perfusion cultivation of human cardiac-derived progenitors facilitates their expansion while maintaining progenitor state Academic Article uri icon


  • The therapeutic application of autologous cardiac-derived progenitor cells (CPCs) requires a large cell quantity generated under defined conditions. Herein, we investigated the applicability of a three-dimensional (3D) perfusion cultivation system to facilitate the expansion of CPCs harvested from human heart biopsies and characterized by a relatively high percentage of c-kit+ cells. The cells were seeded in macroporous alginate scaffolds and after cultivation for 7 days under static conditions, some of the constructs were transferred into a perfusion bioreactor, which was operated for an additional 14 days. A robust and highly reproducible human CPC (hCPC) expansion of more than seven-fold was achieved under the 3D perfusion culture conditions, while under static conditions, the expansion of CPCs was limited only to the first 7 days, after which it leveled-off. On day 21 …

publication date

  • March 28, 2014